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We use the stochastic limit technique to predict a new phenomenon concerning a two-
level atom with degenerate ground state interacting with a quantum field. We show,
that the field drives the state of the atom to a stationary state, which is non-unique,
but depends on the initial state of the system through some conserved quantities. This
non uniqueness follows from the degeneracy of the ground state of the atom, and when
the ground subspace is two-dimensional, the family of stationary states will depend
on a one-dimensional parameter. Only one of the stationary states in this family is a
pure state and it coincides with the known trapped state. This means that by controlling
the initial state (input) we can control the final state (output). The quantum Markov
semigroup obtained in the limit admits an invariant pure state, but it is not true that
all the extremal invariant states are pure. This is an interesting phenomenon also from
mathematical point of view and its meaning will be discussed in a future paper.
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1. INTRODUCTION

In the present paper, we consider using the stochastic limit approach, a two-
level atom with a degenerate ground state (or, equivalently, a three-level atom
with equal energies of the two lower levels), interacting with a quantum field.
This model is a generalization of the well known spin-boson model, considered
by many authors. In Leggett et al. (1987) the dynamics of the spin-boson model
was investigated with the help of functional integration (see also Caldeira et al.,
1981; and Leggett et al., 1985 for the investigation of this model). In Accardi
et al. (1997) an alternative derivation of the main results of Leggett et al. (1987)
was proposed. Moreover, some new interesting regimes for the behavior of the
spin-boson model were found.
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In the present paper, we find new regimes for the dynamics of a two-level atom
with a degenerate ground state, interacting with a quantum field. Application of the
stochastic limit approach to the dynamics of this system shows that the interaction
with a quantum field drives this atom to a family of stationary states, depending
on a one-dimensional parameter, which varies in an explicitly determined interval.
For a particular (extremal) value of this parameter the stationary state coincides
with the coherent population trapped state

|NC〉 = 1√
2

(|1〉 − |2〉) (1)

known in quantum optics and (cf. Alzetta et al., 1976; Arimondo et al., 1976; Gray
et al., 1978 ; Arimondo, 1996; Aspect et al., 1991, Harris, 1994) and also dis-
cussed in quantum information. For example, in Cirac et al. (1997), trapped states
were used to propose a scheme to utilize photons for ideal quantum transmission
between atoms located at spatially separated nodes of a quantum network. Here
|1〉 and |2〉 are two orthogonal ground states of the atom. The other states in the
family of stationary states, obtained in this paper, are mixtures, and can be called
mixed population trapped states.

For the purposes of quantum information, it is interesting to build “decoher-
ence free subspaces” for a given reduced evolution (cf. Zanardi et al., 1997).

One way to achieve this goal is to start with an interaction Hamiltonian,
whose evolution leaves these subspaces invariant.

The interaction used in the present paper does not exhibit this invariance yet
some “hidden decoherence subspaces” emerge in the stochastic limit in a model
which is not purely mathematical, but has many physical realizations.

Our “regime of degeneracy” is not determined only by the degeneracy of the
free system Hamiltonian, but one needs in addition a more subtle condition on
the generalized susceptivities, namely the degeneracy of the coefficient matrix of
the right-hand side of the system (25), (26), (27), which are not present in the
original Hamiltonian, but emerge only in the stochastic limit.

The above described scenario (convergence to a stationary state) can be
realized in equilibrium or in a class of non equilibrium states of the quantum field.
In the vacuum state new phenomena, such as quantum beats, may arise (cf. the
last section).

For the investigation of the dynamics of a quantum system interacting
with quantum field we use the stochastic limit approach (Accardi et al., 2002).
In this approach, one introduces a new slow time scale t/λ2, where λ is a
coupling constant for the interaction of the system with the field. Since in times
of order t/λ2, the interaction produces effects of order t , the described time
rescaling provides a natural time scale for the observable effects of the interaction
system–environment. This means that in the stochastic limit one considers effects
of weak perturbations in the limit of large times. In the limit λ → 0 the dynamics
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is given by Langevin and master equations, see Accardi et al. (2002); Accardi
et al. (2002), which are unambiguously derived from the original Hamiltonian.
For a more general mathematical discussion of Langevin and master equations
see also Fagnola et al. (2002), Chebotarev et al. (2001), Antoniou et al. (2000).

The organization of the present paper is as follows.
In Section 2, using the stochastic golden rule, we find master equation, which

describes the dynamics of the reduced density matrix of the system.
In Section 3, we analyze the system of master equations satisfied by matrix

elements of the density matrix, and find different regimes of behavior for the
dynamics of the system under consideration.

In Section 4, we investigate the regime of degeneracy, and prove that the
system decays to one-dimensional family of stationary states.

In Section 5, we discuss the quantum beats regime, for which the quantum
field, coupled to the atom, is in the Fock (or vacuum) state. In this case, instead of
the decay to a stationary state, we have the decay to the regime of quantum beats
inside the space of density matrices for the two lower levels.

2. THE MASTER EQUATION

We consider a three-level system with degenerate ground states |1〉, |2〉 and
one excited state |3〉.

The interaction of the system with the quantum field (say, with radiation) is
described by the Hamiltonian

H = HS + HR + λHI (2)

where the system degrees of freedom are described by the Hamiltonian HS :

HS = ε1|1〉〈1| + ε1|2〉〈2| + ε3|3〉〈3|
where εi is the energy of the level |i〉 (note that ε1 = ε2 ).

The field degrees of freedom are described by the Hamiltonian

HR =
∑

i

∫
ω(k)a∗

i (k)ai(k) dk (3)

where ai(k) is a boson field with a mean zero gauge invariant Gaussian state
characterized by the pair correlations

〈a∗
i (k)aj (k′)〉 = Ni(k)δij δ(k − k′) (4)

and i, j = 1, 2 are the polarization indices.
The interaction Hamiltonian HI has the following dipole form

HI =
∫ ∑

iα

giα(k)ai(k)D∗
αdk + h.c. (5)
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where α takes the values 1, 2, 3, and 4, giα(k) are complex valued functions in the
Schwartz space (the formfactors, or cut-offs), and

D1 = |1〉〈3|, D2 = |2〉〈3|, D3 = |1〉〈2|, D4 = |2〉〈1|
Remark. The last two terms of the interaction (those with coefficients D3 and
D4) describe the transitions between the two ground states. They play a role only
in the last section of the present paper (beats regime) and in fact, as clearly seen
from the master equation in Section 3, their only contribution to this equation is
a drift term. The most interesting (degeneracy) regime, described is Section 4 is
characterized by the vanishing of the term (31), which is essentially equivalent
to the vanishing of the above mentioned drift term. Thus for this regime one can
suppose that D3 = D4 = 0.

The free evolution of the interaction term a±
i (k)D∓

α is equivalent to an effec-
tive free evolution of the boson field of the form

e−it(ω(k)−ω)ai(k)

where ω = ε3 − ε1 is the Bohr frequency, which is equal to the difference of
energies of the two energy levels.

By the stochastic golden rule (Accardi et al., 2002) the rescaled free evolution
of the field above, in the stochastic limit, becomes a quantum white noise biω(t, k):

biω(t, k) = lim
λ→0

1

λ
e
− it(ω(k)−ω)

λ2 ai(k)

or master field satisfying the commutation relations

[biω(t, k), b∗
jω′ (t ′, k′)] = 2πδω,ω′δij δ(t − t ′)δ(ω(k) − ω)δ(k − k′) (6)

and with the mean zero gauge invariant Gaussian state with correlations:

〈b∗
iω(t, k)bjω′ (t ′, k′)〉 = 2πδω,ω′δij δ(t − t ′)δ(ω(k) − ω)δ(k − k′)Ni(k) (7)

〈biω(t, k)b∗
jω′ (t ′, k′)〉 = 2πδω,ω′δij δ(t − t ′)δ(ω(k) − ω)δ(k − k′)(Ni(k) + 1) (8)

The Schrödinger equation becomes a white noise Hamiltonian equation, cf.
Accardi et al. (2002), Accardi et al. (2002) which when put in normal order is
equivalent to the quantum stochastic differential equation (QSDE)

dUt = (−idH (t) − Gdt)Ut ; t > 0 (9)

with initial condition U0 = 1 and where
(i) h(t) is the white noise Hamiltonian and dH (t), called the martingale term,

is the stochastic differential:

dH (t) =
∫ t+dt

t

h(s)ds =
∑
iαω

(D∗
αdBiαω(t) + DαdB∗

iαω(t)) (10)
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driven by the quantum Brownian motions

dBiαω(t) :=
∫ t+dt

t

∫
dkgiα(k)biω(τ, k) dτ =:

∫ t+dt

t

biω(τ, giα) dτ (11)

(ii) The operator G, called the drift, is given by

G =
∑
iαβω

((giα|giβ)−ωD∗
αDβ + (giα|giβ)

+
ω
DαD∗

β) (12)

where the explicit form of the constants (giα|giβ)±ω , called the generalized suscep-
tivities, is:

(giα|giβ)−ω = −i

∫
dk giα(k)giβ(k)

Ni(k) + 1

ω(k) − ω − i0
(13)

= π

∫
dk giα(k)giβ(k)(Ni(k) + 1)δ(ω(k) − ω) − i

× P.P.
∫

dk giα(k)giβ(k)
Ni(k) + 1

ω(k) − ω

(giα|giβ)+ω = −i

∫
dk giα(k)giβ(k)

Ni(k)

ω(k) − ω − i0
(14)

= π

∫
dk giα(k)giβ(k)Ni(k)δ(ω(k) − ω) − i

× P.P.
∫

dk giα(k)giβ(k)
Ni(k)

ω(k) − ω

We will use the notations

R (giα|giβ)+ω = π

∫
dk giα(k)giβ(k)Ni(k)δ(ω(k) − ω) (15)

I (giα|giβ)+ω = − P.P.
∫

dk giα(k)giβ(k)
Ni(k)

ω(k) − ω
(16)

R (giα|giβ)−ω = π

∫
dk giα(k)giβ(k)(Ni(k) + 1)δ(ω(k) − ω) (17)

I (giα|giβ)−ω = − P.P.
∫

dk giα(k)giβ(k)
Ni(k) + 1

ω(k) − ω
(18)

(giα|giβ)±ω = R (giα|giβ)±ω + iI (giα|giβ)±ω (19)

(giα|giβ)±ω = R (giα|giβ)±ω − iI (giα|giβ)±ω (20)

Note that for α = β the values (15), (16) coincide with the real and the imaginary
part of the generalized susceptivities, but, for α 	= β they are not necessarily equal
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to the real and imaginary parts of some number. The values in (19), (20) are related
in the following way: the complex conjugate of (giα|giβ)±ω is equal to (giβ |giα)±ω .
We also use the notation

(gα|gβ)±ω =
∑

i

(giα|giβ)±ω (21)

Remark 1. Typically the giα are matrix elements of some operators appearing
in interaction Hamiltonian (cf. the description in Section 4.9.3 of Accardi et al.
(2002)). Therefore, their dependence on the index α is often unavoidable. There-
fore we will develop the theory, as far as possible, keeping this dependence explicit.
In some cases, e.g., some particular classes of three-level atoms, the assumption
that the formfactors giα do not depend on the index α, is justified. In this case the
formulae simplify and are easier to interpret. This situation is described in Section
3 below.

Remark 2. Note that if the expectation Ni(k) of the number operators in the
reference state depends only on the dispersion ω(k) (in this case we will denote
this value N (ω)), then we have the identity

Rω = R (g|g)+ω
R (g|g)−ω

= N (ω)

N (ω) + 1
(22)

which shows that this quotient of the generalized susceptivities does not depend
on the formfactor g. This “universality” property suggests that the quotient (22)
is a natural non equilibrium generalization of the Einstein emission-absorption
coefficient (cf. Section 5.9 of Accardi et al., 2002).

The master equation of the stochastic limit approach for the reduced density
matrix ρ(t) of the system for a general discrete system with dipole interaction with
a quantum field was found in Accardi et al. (2002), see also Accardi et al. (2002).
The general form of this master equation is

d

dt
ρ(t) =

∑
j

∑
αβ

∑
ω∈F

(
iI (gjα|gjβ)−ω [ρ,E∗

ω (Dα) Eω(Dβ)]

− iI (gjα|gjβ)+
ω

[ρ,Eω (Dα) E∗
ω(Dβ)]

+ 2R (gjα|gjβ)−ω

(
Eω(Dβ)ρE∗

ω (Dα) − 1

2
{ρ,E∗

ω(Dα)Eω(Dβ)}
)

+ 2R (gjα|gjβ)+
ω

(
E∗

ω(Dβ)ρEω (Dα) − 1

2
{ρ,Eω (Dα) E∗

ω(Dβ)}
))

(23)
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Here the summation on ω runs over the Bohr frequencies (energy differences for
the energy levels):

F : = {ω = εr − εr ′ : εr , εr ′ ∈ Spec HS}
Eω(X) : =

∑
εr∈Fω

Pεr−ωXPεr

where Pεr
are spectral projections for the system and

Fω := {εr ∈ Spec HS : εr − ω ∈ SpecHS}
= {εr ∈ SpecHS : ∃ ε′

r ∈ SpecHS,× εr − ε′
r = ω}

For the considered degenerate three-level 
-system this equation takes the
form

dρ(t)

dt
=

∑
j

[(
iI (gj1|gj1)−ω [ρ, |3〉〈3|] − iI (gj1|gj1)+

ω
[ρ, |1〉〈1|]

+ 2R (gj1|gj1)−ω

(
ρ33|1〉〈1| − 1

2
{ρ, |3〉〈3|}

)

+ 2R (gj1|gj1)+
ω

(
ρ11|3〉〈3| − 1

2
{ρ, |1〉〈1|}

))

+
(

iI (gj2|gj2)−ω [ρ, |3〉〈3|] − iI (gj2|gj2)+
ω

[ρ, |2〉〈2|]

+ 2R (gj2|gj2)−ω

(
ρ33|2〉〈2| − 1

2
{ρ, |3〉〈3|}

)
+ 2R (gj2|gj2)+

ω

×
(

ρ22|3〉〈3| − 1

2
{ρ, |2〉〈2|}

))
+

(
−iI (gj1|gj2)+

ω
[ρ, |1〉〈2|]

+ 2R (gj1|gj2)−ωρ33|2〉〈1| + 2R (gj1|gj2)+
ω

(
ρ21|3〉〈3| − 1

2
{ρ, |1〉〈2|}

))

+
(

−iI (gj2|gj1)+
ω

[ρ, |2〉〈1|] + 2R (gj2|gj1)−ωρ33|1〉〈2| + 2R (gj2|gj1)+
ω

×
(

ρ12|3〉〈3| − 1

2
{ρ, |2〉〈1|}

))
+ i

(
I (gj3|gj3)−0 [ρ, |2〉〈2|]

− I (gj3|gj3)+0 [ρ, |1〉〈1|]
)

+ i

(
I (gj4|gj4)−0 [ρ, |1〉〈1|]

− I (gj4|gj4)+0 [ρ, |2〉〈2|]
)]

(24)

where, as usual [a, b] = ab − ba and {a, b} = ab + ba.
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One of our main results is the following separation of the density matrix into
parts corresponding to invariant subspaces of the evolution.

Lemma 1. The vector space H (3) of the Hermitian 3 × 3 (density) matrices is
the direct sum of two subspaces, V0, V1, which are invariant under the evolution,
defined by (24):

H (3) = V0 ⊕ V1

A linear basis of V0 is given by {|2〉〈3|, |3〉〈2|, |3〉〈1|, |1〉〈3|}. Any matrix
in this space decays exponentially to zero under the reduced evolution if the real
parts of the generalized susceptivities (15) (for the indices α = 1, 2 and β = 3
and vice versa) are non zero.

A linear basis of V1 is given by {|2〉〈1|, |1〉〈2|, |3〉〈3|, |1〉〈1|, |2〉〈2|}. This
space contains all the stationary states for the evolution.

Proof. Direct verification from the right hand side of (24).

Remark 3. Notice that the space V1 = C|3〉〈3| ⊕ M , where M is the 2 × 2
matrix algebra generated by |1〉〈2|, is itself a ∗-algebra.

Remark 4. From Lemma 1 we deduce that the evolution of the density matrix
ρ(t) can be split into the following sum of two evolutions ρ0(t) and ρ1(t), where
ρ0(t) is an off diagonal matrix and ρ1(t) is a density matrix:

ρ(t) = ρ0(t) + ρ1(t) =

 0 ρ32(t) ρ33(t)

ρ23(t) 0 0

ρ13(t) 0 0


 +


 ρ33(t) 0 0

0 ρ22(t) ρ21(t)

0 ρ12(t) ρ11(t)




Moreover, ‖ρ0(t)‖ ≤ e−ct , where 2c = min R (gjα|gjα)±ω , j = 1, 2, α = 1, 2, i.e.
the off-diagonal part of ρ(t) (in V0) decays exponentially whenever c > 0.

3. DIFFERENT REGIMES FOR THE MASTER EQUATION

In the present section we will describe the set of stationary states for the
evolution, generated by the master equation (24). By Lemma 1 and Remark 4,
invariant states of (24) belong to space V1, if min R (gjα|gjα)±ω > 0 (which is the
regime of our interest). On the subspace V1, (24) reduces to the following system
of three differential equations [where we use the notations (15)–(20)]

dρ22(t)

dt
= 2R (g2|g2)−ωρ33 − 2R (g2|g2)+ωρ22 − (g1|g2)+ωρ21 − (g1|g2)+ωρ12 (25)

dρ11(t)

dt
= 2R (g1|g1)−ωρ33 − 2R (g1|g1)+ωρ11 − (g2|g1)+ωρ21 − (g2|g1)+ωρ12 (26)
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dρ12(t)

dt
= −(

(g1|g1)+ω + (g2|g2)+ω
)
ρ12 − (g1|g2)+ωρ11

− (g2|g1)+ωρ22 + 2R (g2|g1)−ωρ33 + i

(
I (g3|g3)−0 + I (g3|g3)+0

− I (g4|g4)−0 − I (g4|g4)+0

)
ρ12 (27)

which together with the normalization condition

ρ11 + ρ22 + ρ33 = 1

the conjugation rule

ρ∗
12 = ρ21, ρ11, ρ22, ρ33 ∈ R

and the conditions of positivity of the density matrix discussed in the following
Lemma, form the set of equations determining the evolution of density matrix.

Lemma 2. The Hermitian matrix

ρ =
(

ρ33 0 0
0 ρ22 ρ21

0 ρ12 ρ11

)

is a density matrix iff the diagonal elements satisfy

ρ11 + ρ22 + ρ33 = 1, ρ11, ρ22, ρ33 ≥ 0 (28)

and the off-diagonal elements satisfy

ρ∗
12 = ρ21, |ρ12|2 ≤ ρ11ρ22 (29)

For simplicity we discuss the case when the susceptivities (gα|gβ)±
ω

, α, β =
1, 2 do not depend on α, β. In this case, we denote them (g|g)±ω . Introduce real
variables x, y, z, t :

ρ22 − ρ11 = x, ρ21 − ρ12 = iy, ρ21 + ρ12 = z, ρ22 + ρ11 = t (30)

With these notations, we get for the system (25)–(27)

d

dt
x = −2R (g|g)+ωx + 2I (g|g)+ωy

d

dt
y = −2R (g|g)+ωy − 2I (g|g)+ωx − Iz

d

dt
z = −2R (g|g)+ω z − 2R (g|g)+ω t + 4R (g|g)−ω (1 − t) + Iy (31)

d

dt
t = 4R (g|g)−ω (1 − t) − 2R (g|g)+ω t − 2R (g|g)+ω z (32)
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where

I = I (g3|g3)−0 + I (g3|g3)+0 − I (g4|g4)−0 − I (g4|g4)+0 (33)

The system above has the matrix form

d

dt




x

y

z

t


 = A




x

y

z

t


 +




0
0

4R (g|g)−ω
4R (g|g)−ω




with the matrix A equal to


−2R (g|g)+ω 2I (g|g)+ω 0 0

−2I (g|g)+ω −2R (g|g)+ω −I 0

0 I −2R (g|g)+ω −2R (g|g)+ω − 4R (g|g)−ω
0 0 −2R (g|g)+ω −2R (g|g)+ω − 4R (g|g)−ω


 (34)

For the determinant of A we get

Det A = 2R (g|g)+ω
(
2R (g|g)+ω + 4R (g|g)−ω

)
I 2

Since, if the determinat is nonzero, there is no zero eigenvalues, therefore the
system of equations in this case has no nontrivial stationary states.

We see that the behavior of the density matrix is described by the value I ,
given by (33), which arises from the coupling of two lower levels (which have the
same energy). We will say that these lower levels are uncoupled, if the value I

defined by (33) is zero. In the uncoupled regime the transitions between the two
lower levels |1〉 and |1〉 compensate, and the contribution to the master equation
corresponding to these transitions vanish. In this case the determinant of the matrix
A is zero and therefore the system (25)–(27) has a family of stationary states. In this
case, see in the next section for the details, the stationary states are degenerate and
form one dimensional family, and the dynamics of the density matrix is described
by exponential decay to the family of stationary states (if R (g|g)+ω > 0). We call
this regime (when I = 0) the regime of degeneracy.

If the value (33) is nonzero, then Det A is positive (if R (g|g)+ω > 0), and we
obtain that the density matrix will converge to the unique stationary state.

4. THE REGIME OF DEGENERACY

Let us start with the investigation of the degeneracy regime, when the value
(33) is zero.

Lemma 3. When the susceptivities (gα|gβ)±
ω

, α, β = 1, 2 do not depend on α,
β (in this case, we denote them (g|g)±ω ) the system (25)–(27) of linear equations
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determining the evolution of the atom has the conservation law

ρ11(t) + ρ22(t) = ρ12(t) + ρ21(t) + C; ∀t (35)

Moreover, if R(g|g)−ω > 0, then ρ12(t) + ρ21(t) converges exponentially in time to
the stationary value

ρ12 + ρ21 = 4R (g|g)−ω (1 − C) − 2R (g|g)+ωC

4(R (g|g)−ω + R (g|g)+ω )
= 1 − C − CRω/2

1 + Rω

(36)

and C is the real constant. Here Rω is defined by (22).

The constant C has the form

C = 1 − ρ33 − 2 Re ρ12

Proof. Since the value (33) is 0, comparing (31) and (32) and using (30), one
easily deduces from the identity

dρ11(t)

dt
+ dρ22(t)

dt
= dρ12(t)

dt
+ dρ21(t)

dt

From which, the conservation law (35) follows. It implies that for fixed C, the
evolution of the system is characterized by the real function of time ρ12(t) + ρ21(t)
which we denote 2s(t):

s(t) = 1

2
(ρ12(t) + ρ21(t))

With this notation the system (25)–(27) implies that

ds(t)

dt
= −4

(
R (g|g)−ω + R (g|g)+ω

)
s(t) + 2R (g|g)−ω (1 − C) − R (g|g)+ωC

(37)

If R(g|g)−ω > 0, then (37) implies the exponential decay of s(t) to the stationary
value (36) and this proves the lemma.

Remark 5. Note that the condition R(g|g)−ω > 0 means that∫
g(k)g(k)δ(ω(k) − ω)dk 	= 0

which is automatically satisfied when the support of the formfactor g(k) intersects
the resonant surface ω(k) = ω in a set of nonzero (surface) measure.

The stationary solution of the system (25)–(27) is determined by the system
of equations

2R (g2|g2)−ω (ρ11 + ρ22) + 2R (g2|g2)+ωρ22 + (g1|g2)+ωρ∗
12

+ (g1|g2)+ωρ12 = 2R (g2|g2)−ω (38)
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2R (g1|g1)−ω (ρ11 + ρ22) + 2R (g1|g1)+ωρ11 + (g2|g1)+ωρ∗
12

+ (g2|g1)+ωρ12 = 2R (g1|g1)−ω (39)

(
(g1|g1)+ω + (g2|g2)+ω

)
ρ12 = −(g1|g2)+ωρ11 − (g2|g1)+ωρ22 + 2R (g2|g1)−ωρ33 (40)

Remark 6. For different formfactors gα(k) the system (25)–(27) may have dif-
ferent behavior. In the generic case for g1 	= g2 the stationary solution is unique.
For instance when g1 is orthogonal to g2 (in the sense of the bilinear form (g1|g2)+ω ),
then the determinant of the system (38), (39) reduces to

−(
2R (g2|g2)+ω 2R (g1|g1)−ω + 2R (g2|g2)−ω 2R (g1|g1)+ω + 2R (g2|g2)+ω 2R (g1|g1)+ω

)
and whenever this determinant is nonzero, the solution is unique.

When g1 = g2 the solution of the system above is nonunique due to Lemma 3.
Now we are ready to formulate the following theorem describing the structure

of the stationary density matrices.

Theorem 4. For (gα|gβ)±
ω

not depending on α, β and when

R (g|g)+ω > 0 (41)

the system of linear (38)–(40) determining the stationary state of the atom pos-
sesses a family of solutions parameterized by the one-dimensional parameter s:

ρ =
(

ρe 0 0
0 ρg s

0 s ρg

)
(42)

where, in the notation (22)

ρe = 2R (g|g)+ω (1 + 2s)

4R (g|g)−ω + 2R (g|g)+ω
= (1 + 2s)Rω

2 + Rω

(43)

ρg = 2R (g|g)−ω − 2R (g|g)+ω s

4R (g|g)−ω + 2R (g|g)+ω
= 1 − sRω

2 + Rω

(44)

The admissible values of the parameter s are precisely those for which

1

2(1 + Rω)
= 1

2

(
1 + R (g|g)+ω

R (g|g)−ω

)−1

≥ s ≥ −1

2
(45)

Moreover, if (41) is satisfied, the solution of the system (25)–(27) converges
exponentially, as t → ∞, to the stationary state (42).

Proof. If g1 = g2 = g, then (38)–(40) take respectively the form:

2R (g|g)−ω (ρ11 + ρ22) + 2R (g|g)+ωρ22 + (g|g)+ωρ21 + (g|g)+ωρ12 = 2R (g|g)−ω
(46)
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2R (g|g)−ω (ρ11 + ρ22) + 2R (g|g)+ωρ11 + (g|g)+ωρ21 + (g|g)+ωρ12 = 2R (g|g)−ω
(47)

2R (g|g)+ωρ12 = −(g|g)+ωρ11 − (g|g)+ωρ22 + 2R (g|g)−ωρ33 (48)

Taking the differences of (46), (47) and of (48) and its conjugate, we obtain

2R (g|g)+ω (ρ22 − ρ11) + 2iI (g|g)+ω (ρ21 − ρ12) = 0

2R (g|g)+ω (ρ21 − ρ12) + 2iI (g|g)+ω (ρ22 − ρ11) = 0

Taking the sum of the two equations above and dividing by two, we get

(g|g)+ω (ρ22 − ρ11 + ρ21 − ρ12) = 0

If (g|g)+ω 	= 0, then since ρ22 − ρ11 is real, and ρ12 − ρ21 is imaginary, we obtain

ρ22 = ρ11, ρ21 = ρ12 (49)

In particular, ρ12 must be a real number. Then, the sum of (46) and (47) takes the
form

2R (g|g)+ω (ρ11 + ρ22 + ρ12 + ρ21) = 4R (g|g)−ωρ33 (50)

Equations (49) and (50) imply that any stationary density matrix must satisfy the
following condition:

2R (g|g)+ω (ρ11 + ρ12) = 2R (g|g)−ωρ33 (51)

Since under the condition (49), the (46) and (47) coincide, the (49), (51) describe
the general stationary solution for (25)–(27). From these (49), (51) and (28), we
obtain

ρ11 = ρ22 = 2R (g|g)−ω − 2R (g|g)+ωρ12

4R (g|g)−ω + 2R (g|g)+ω
= 1 − sRω

2 + Rω

ρ33 = 2R (g|g)+ω + 4R (g|g)+ωρ12

4R (g|g)−ω + 2R (g|g)+ω
= 1 + 2Rωs

2 + Rω

(52)

From (52) and (29) one sees that the positivity of the density matrix is equivalent
to inequalities

1

2

(
1 + R (g|g)+ω

R (g|g)−ω

)−1

≥ ρ12 ≥ −1

2
(53)

Conversely, taking any real value of ρ12 satisfying (53) and determining ρ11 and
ρ33 by (52), one obtains a stationary state for the master equations (25)–(27).
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Let us now prove exponential convergence of the system to a stationary state.
The system (25)–(27) implies

d

dt
(ρ22 − ρ11) = −2R (g|g)+ω (ρ22 − ρ11) + 2iI (g|g)+ω (ρ12 − ρ21) (54)

d

dt
(ρ12 − ρ21) = −2R (g|g)+ω (ρ12 − ρ21) + 2iI (g|g)+ω (ρ22 − ρ11) (55)

Adding these two equations we see that

ρ22 − ρ11 + ρ12 − ρ21 = const et(−2R (g|g)+ω +2iI (g|g)+ω ) (56)

and, if R (g|g)+ω > 0 the linear combination (56) converges exponentially to zero.
Since ρ22 − ρ11 is real and ρ12 − ρ21 is imaginary, we obtain that (56) converges
to the state where ρ22 = ρ11 and ρ12 = ρ21 (and therefore is real).

Then, applying Lemma 3, we get that ρ33 converge to stationary values, which
are controlled by the stationary value s = 1

2 (ρ12 + ρ21).
This finishes the proof of the theorem.

Since the generalized susceptivities are given by the expression

R (gi |gi)
+
ω = π

∫
|gi(k)|2Ni(k)δ(ω(k) − ω) dk

R (gi |gi)
−
ω = π

∫
|gi(k)|2(Ni(k) + 1)δ(ω(k) − ω) dk

R (g|g)±ω =
∑

i

R (gi |gi)
±
ω

It follows that one has inequality

R (g|g)−ω > R (g|g)+ω

One can see that for high intensity of radiation, i.e., when Ni(k) � 1, one
can put Rω = Ni (k)

Ni (k)+1 = 1. In this case the solution (42), (45) will be simplified as
follows

ρ =



1+2s
3 0 0
0 1−s

3 s

0 s 1−s
3


 ,

1

4
≥ s ≥ −1

2

The most interesting states correspond to the extremal values of the parameter
ρ12. The minimal value of ρ12 is − 1

2 , which correspond to the density matrix for
the pure state |NC〉:

ρmin = 1

2

( 0 0 0
0 1 −1
0 −1 1

)
= |NC〉〈NC| = 1

2
(|1〉〈1| + |2〉〈2| − |1〉〈2| − |2〉〈1|)
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where the vector

|NC〉 = 1√
2

(|1〉 − |2〉)

is exactly the coherent population trapped state (1), discussed in the literature
Alzetta et al. (1976); Arimondo et al. (1976); Gray et al. (1978), Arimondo
(1996); Aspect et al. (1991). In the same approximation the maximal value ρ12 = 1

4
corresponds to the density matrix

ρmax = 1

4

( 2 0 0
0 1 1
0 1 1

)
= 1

2
|3〉〈3| + 1

2
|C〉〈C|

This state is mixed, but the state of the reduced system corresponding to levels |1〉
and |2〉 is pure with the state vector

|C〉 = 1√
2

(|1〉 + |2〉)

(called the coupled state in Alzetta et al., (1976); Arimondo et al. (1976); Gray
et al. (1978)).

Remark 7. To distinguish experimentally different stationary states from the
obtained family, one can measure the following observable

A = |1〉〈2| + |2〉〈1|
which for instance may describe the interaction of the hyperfine split levels with
a magnetic field.

In fact the measurement of A in the stationary state gives

tr ρA = ρ12 + ρ21 = 2s

and the different stationary states give different mean values of A.

Remark 8. (44), (45) imply that the minimum ground state population is
achieved when the parameter s is maximum, i.e.,

ρmin
g = 1

2 + Rω

(
1 − Rω

2 + 2Rω

)
= 1

2

1

1 + Rω

= 1

2

N (ω) + 1

2N (ω) + 1
>

1

4

Since the ground level population is 2ρg , it follows that in any stationary state at
least 1/2 of the population is in the ground level. On the other hand the above
chain of identities shows, in that the region of high radiation intensity N (ω) � 1,
the estimate ρmin

g = 1
4 is almost exact and therefore we can conclude that, in this

region, for any stationary state, the population of the excited state is about 1/2.

Remark 9. If for α, β = 1, 2

(gα|gβ)+ω = 0
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in particular, in the Fock case, the stationary solutions of (25)–(27) (neglecting the
trivial case when also (gα|gβ)−ω = 0) is characterized by the single condition

ρ11 + ρ22 = 1, ρ11, ρ22 ≥ 0

so that ρ33 = 0 and ρ12 is arbitrary and subject only to the constraints (29).

Remark 10. Note that if R (g|g)+ω = 0 and I (g|g)+ω 	= 0 then (56) implies that
the system does not converge to a stationary state but has an oscillatory behavior.

5. QUANTUM BEATS REGIME

Consider the evolution of the sytem under investigation in the Fock state,
when all (g|g)+ are equal to zero. In this regime there exists possibility that there
is no decay to the stationary state and we have the oscillations. We consider again
the case when the susceptivities (gα|gβ)±

ω
do not depend on α, β.

In the considered case the matrix (34) takes the form

A =




0 0 0 0
0 0 −I 0

0 I 0 −4R (g|g)−ω
0 0 0 −4R (g|g)−ω




By Remark 5 after Lemma 3 it is natural to assume that R (g|g)−ω > 0. In this
case the off-diagonal matrix elements ρ13, ρ23 decay exponentially by Remark 4,
cf. Accardi et al. (2002).

Analyzing the system equations for the density matrix, one can check that in
the considered case the long time dynamics is described by

ρ13 = ρ23 = 0, ρ22 + ρ11 = 1, ρ33 = 0, ρ22 − ρ11 = const

ρ12 = const eitI (57)

where ρij are complex numbers satisfying Lemma 2.
This kind of pure oscillatory behavior without damping is related to the

quantum beats.

6. CONCLUSION

In the present paper we investigated the interaction of an atom with a degen-
erate ground state with a quantum field. We find (under natural conditions for the
formfactors), that the evolution drives the atom exponentially to a stationary state.
This stationary state is not unique, and the family of stationary states may be pa-
rameterized by a one-dimensional parameter. For a special (minimal) value of this
parameter the obtained stationary state is pure and coincides with the population
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trapped state, known in the literature Alzetta et al. (1976); Arimondo et al. (1976);
Gray et al. (1978), Arimondo, 1996, Aspect et al. (1991). The obtained results
show the possibility of emergence of mixed stationary states, which continuously
interpolate between the coupled and the non-coupled states. This difference can
be experimentally detected.

In the case of special states (say the Fock state) also the oscillatory behavior
(57) is possible.
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